Randomized Linear Algebra can Accelerate Graph Partitioning

Erik G. Boman
Heliezer Espinoza
Jennifer Loe
SIAM CS\&E 23, Amsterdam, NL
Feb. 27 - Mar. 3, 2023

- Graph Partitioning
- Spectral Partitioning
- Sphynx: A Parallel Spectral Partitioner
- A Randomized Eigensolver
- Results
- Thanks to Seher Acer for initial version of Sphynx
${ }_{3}$ Graph Partitioning Background
- Graph $G=(V, E)$: set of vertices V, set of edges E
- For the graph partitioning problem
- each vertex is assigned a weight value
- each edge is assigned a cost value

- A K-way partition Π of G
- is balanced if there is a balance on part weights
- has a cutsize defined as the sum of the cut-edge costs
- Graph partitioning problem is to find a balanced K-way partition of G with minimum cutsize

4 Motivation - Sphynx

- We are revisiting graph partitioning problem, because:
- Applications are moving to accelerators
- DoE facilities have announced different accelerators
- AMD, Intel, NVIDIA GPUs
- No accelerator-enabled graph partitioning tool exists
- We provide Sphynx to fill this gap
- Distributed-memory parallel, accelerator-enabled, and portable
- Sphynx is based on a spectral approach, because:
- Spectral methods use linear-algebra kernels, which are more amenable to parallelization on accelerators
- Can potentially speed up algorithm with randomized linear algebra
s Background: Spectral partitioning
- Proposed by Pothen, Simon, Liou ('90)
- Based on Donath \& Hoffman ('73), Fiedler ('73)
- Eigenvalue problems: combinatorial, and normalized
- Adjacency matrix $A=(a)_{i j}= \begin{cases}1 & \text { if } e_{i, j} \in E \\ 0 & \text { otherwise }\end{cases}$
- Degree matrix $D=(d)_{i j}=\left\{\begin{array}{cl}\operatorname{deg}\left(v_{i}\right) & \text { if } i=j \\ 0 & \text { otherwise }\end{array}\right.$
- Form a Laplacian matrix:
- Combinatorial Laplacian $L_{C}=D-A$
- Normalized Laplacian $L_{N}=I-D^{-1 / 2} A D^{-1 / 2}$
- Find eigenvectors x corresponding to smallest nontrivial eigenvalues $\lambda>0$ s.t.
- $L_{C} x=\lambda x$, for combinatorial eigenvalue problem
- $\quad L_{N} x=\lambda x$, for normalized eigenvalue problem

- Sphynx: Parallel partitioner in Trilinos

1. Create Laplacian L for G - Tpetra CrsMatrix, Kokkos parallel_for
2. Compute $(\log K+1)$ eigenvectors of L using LOBPCG [1] - Anasazi

First eigenvector: trivial, not used
Remaining vectors: coordinates to embed G into $\log K$-dimensional space
3. Compute a K-way partition on coordinates using multi-jagged [2] - Zoltan2

[1] A. V. Knyazev,"Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method," SIAM Journal on Scientific Computing, vol. 23, no. 2, pp. 517-541, 2001.
[2] M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, "Multi-jagged: A scalable parallel spatial partitioning algorithm," IEEE Transactions on Parallel and Distributed Systems, vol. 27, pp. 803-817, March 2016.

- Number of iterations in LOBPCG is a bottleneck
- LOBPCG allows using a preconditioner
- Sphynx supports three preconditioners

1. Jacobi: $M=\operatorname{diag}(A)^{-1}$ (Ifpack2)
scaling each row by the inverse of the diagonal, easy to parallelize
2. Polynomial: $M=p_{k}(A)$ (Belos)

- SpMV to apply, highly parallel
based on GMRES polynomial

3. (Algebraic) Multigrid: $A_{\ell+1}=R A_{\ell} P$ (MueLu)

- multilevel, captures more global information
- costlier setup
: Sphynx - Experiments
- The GPU focus: MPI+Kokkos (Cuda/HIP)
- Performed on Summit and used 24 GPUs
- Desired number of parts $=\mathrm{K}=24$
- Each GPU is exclusively used by one MPI rank (default)
- Device allocations in the Unified Virtual Memory (default)
- Initial distribution of the test graphs: 1D block
- This is the default distribution with Tpetra CrsMatrix
- Parameter sensitivity and comparison against the state of the art
- Performance metrics: cutsize and runtime

- Sphynx - Dataset

- Comparison against ParMETIS [1] and XtraPuLP [2]
- ParMETIS and XtraPuLP do not run on GPUs
- Application-friendly comparison on 24 MPI ranks
- Sphynx uses 6 MPI ranks per node and 1 GPU per rank
- ParMETIS uses 6 MPI ranks per node
- XtraPuLP uses 6 MPI ranks per node and 7 OpenMP threads per rank

Average results normalized w.r.t Sphynx				
	ParMETIS		XtraPuLP	
	runtime	cutsize	runtime	cutsize
regular	0.33	0.81	0.31	6.36
irregular	23.95	0.30	1.24	0.45

- ParMETIS execution did not finish in 2 hours on 4 graphs
- Largest irregular graphs: uk-2005, it-2004, twitter7, com-Friendster

" Randomized Eigensolvers

- The most expensive phase (90-95\%) in spectral partitioning is the eigensolver
- Fairly low accuracy is sufficient to obtain good partitioning
- Key idea: We can use a randomized eigensolver instead of LOBPCG
- Randomized methods often get low-accuracy solutions very fast
- We follow the approach in Halko, Martinsson, Tropp (20XX)
- We have explored this approach in a prototype
- HPC implementation in Trilinos/Sphynx still to do

Randomized Method: Phase I

- Here we will use the normalized Laplacian, L_{N}
- We estimate the largest eigenvalues of the normalized adjacency matrix, which correspond to the smallest eigenvalues of L_{N}
- First, we approximate the range of A_{N}, where $A_{N}=D^{-1 / 2} A D^{-1 / 2}$
- Draw a random Gaussian (normal) matrix Ω
- Form $Y=A_{N}{ }^{q} \Omega$
- Compute skinny $Q R: Q R=Y$

Randomized Method: Phase 2

- Second, compute eigenvalues on the projected problem.
- Compute projection $B=Q^{\top} A Q$
- Solve eigenproblem for $B: B=V \lambda V^{\top}$
- Project back: U= QV
- We only need to solve a small, dense eigenproblem for B
. Fast!
- No longer need LOBPCG (or any sparse eigensolver)

Irregular: Hollywood

Regular: Brick3d

The randomized eigensolver actually works better than LOBPCG for partitioning with sufficiently large q (for irregular graphs)!

Sphynx edge cuts with LOBPCG vs randomized solver with L=20.

Matrix	LOBPCG	$\mathbf{q}=\mathbf{I}$	$\mathbf{q}=\mathbf{3}$	$\mathbf{q}=5$	$\mathbf{q}=\mathbf{7}$	$\mathbf{q}=\mathbf{9}$	$\mathbf{q}=\mathrm{II}$
cubel00	$2,036,942$	$23,280,878$	$18,643,406$	$16,339,232$	$14,763,242$	$13,620,082$	$12,645,466$
hollywood	$69,010,728$	$99,913,222$	$88,136,872$	$79,170,890$	$72,369,774$	$68,120,278$	$66,220,826$
wikipedia	$70,372,336$	$82,607,424$	$80,328,958$	$77,783,740$	$74,965,720$	$71,660,478$	$69,205,042$
FullChip	$19,837,100$	$21,925,964$	$18,723,240$	$17,296,392$	$16,483,600$	$15,890,706$	$15,466,674$
Circuit5M	$40,918,466$	$52,793,074$	$49,117,806$	$42,290,548$	$33,731,544$	$31,757,878$	$31,563,734$

Randomized method (q=II) often gives lower (better) cuts than LOBPCG!

${ }_{16}$ Results: Run Time

Sphynx run times (CPU) with LOBPCG vs randomized solver with L=20.

Matrix	LOBPCG	q=1	$\mathrm{q}=3$	$\mathrm{q}=5$	$\mathrm{q}=7$	q=9	q= l 1
cube 100	18.19	1.601	2.185	2.779	3.357	3.907	4.465
hollywood	360.6	5.865	10.88	15.69	20.44	25.33	30.35
wikipedia	923.3	18.59	33.28	47.75	62.15	76.45	90.84
FullChip	162.8	5.00	6.24	7.50	8.79	10.13	11.38
Circuit5M	821.5	11.14	13.98	16.23	18.27	21.04	23.93

Our randomized method is I0X-80X faster ($q=1$) than LOBPCG! Also much faster with $q=11$ (good cuts)

- Randomized eigensolver can dramatically speed up (5-80X) a spectral partitioner
- Works well for many irregular graphs (e.g., web graphs)
- but not so well for more regular graphs (e.g., meshes)
- Perhaps related to separation of the Laplacian eigenvalues?
- Trade-off in computational cost vs quality
- Sphynx has been released in Trilinos/Zoltan2
- Randomized method in progress (will be released soon)
- All spectral methods have some weaknesses
- Often slower than multilevel methods and sometimes worse cuts
- Collaboration with K. Madduri and M. Gilbert (Penn State) may address this
- Future work:
- Add refinement: Will improve cut quality but take more time
- Alternatives to Multijagged geometric partitioning (QRCP?)

This research was supported by the Exascale Computing Project (I7-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Weren't they abandoned in the ' 90 s and replaced by multilevel methods? Yes, but...

- Quality of spectral partitioners are often only slightly worse than multilevel.
-Preconditioned eigensolvers (LOBPCG) came later.
- Linear algebra operations have been optimized for GPU.
- Spectral partitioning is robust for large \#proc (\#GPU), as eigenvectors don't change
- Traditional spectral methods [1] use recursive bipartitioning. At each bipartitioning step, they
- compute one eigenvector (Fiedler vector) on the current graph
- sort the vertices w.r.t. the entries of the eigenvector
- bipartition the vertices according to the sorted order
- Sphynx computes $(\log K+1)$ eigenvectors of the Laplacian, all at once
- Computing all eigenvectors at once avoids
- forming subgraphs and/or corresponding Laplacians
- moving subgraphs across different processes
- calling eigensolver multiple times
[1] A. Pothen, H. Simon, and K. Liou, "Partitioning sparse matrices with eigenvectors of graphs," SIAM J. Matrix Anal., vol. 11, pp. 430-452, July 1990.

LOBPCG Convergence Tolerance:

Default: 1e-2 for MueLu

Default: 1e-2 for all
$1 \mathrm{e}-3$ for others

Eigenvalue Problem:

Default: combinatorial for regular graphs, generalized for irregular graphs with Jacobi and MueLu, and normalized for irregular graphs with Polynomial.

Preconditioner:

Average results normalized w.r.t. Jacobi				
	Polynomial		MueLu	
	runtime	cutsize	runtime	cutsize
regular	0.46	1.03	$\mathbf{0 . 4 2}$	$\mathbf{0 . 9 1}$
irregular	$\mathbf{0 . 6 2}$	$\mathbf{1 . 7 1}$	1.91	0.94

Suggested: MueLu for regular graphs, Polynomial for irregular graphs.

Sphynx Running Time on OLCF systems:

- Summit: Nvidia Volta V100
- Spock: AMD MI200

RUNNING TIME (s)			
	Summit	Spock	Spock/Summit
ecology I	1.40	0.65	0.47
dielFilterV2real	2.13	1.61	0.75
thermal2	1.78	1.22	0.69
Bump_2911	1.68	1.35	0.80
Queen_4147	2.20	1.61	0.73
100^3	1.39	0.97	0.70
200^3	2.11	1.78	0.84
400^3	6.78	7.75	1.14
geomean			0.75
hollywood-2009	4.79	3.60	0.75
com-Orkut	8.06	7.52	0.93
wikipedia-20070206	15.66	18.44	1.18
cit-Patents	8.27	7.75	0.94
com-Livejournal	8.70	7.81	0.90
wb-edu	5.54	6.55	1.18
uk-2005	89.31	137.59	1.54
it-2004	90.24	101.58	1.13
twitter7	482.85	499.43	1.03
com-Friendster	186.16	135.20	0.73
FullChip	48.36	77.56	1.60
circuit5M	43.55	47.87	1.10
geomean			1.05

