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Overview

§ Graph Partitioning

§ Spectral Partitioning

§ Sphynx: A Parallel Spectral Partitioner

§ A Randomized Eigensolver

§ Results

§ Thanks to Seher Acer for initial version of Sphynx
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3 Graph Partitioning Background

§ Graph 𝐺 = 𝑉, 𝐸 : set of vertices 𝑉, set of edges 𝐸

§ For the graph partitioning problem
§ each vertex is assigned a weight value

§ each edge is assigned a cost value

§ A 𝐾-way partition Π of 𝐺
§ is balanced if there is a balance on part weights
§ has a cutsize defined as the sum of the cut-edge costs

§ Graph partitioning problem is to find a balanced 𝐾-way 
partition of 𝐺 with minimum cutsize
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4 Motivation - Sphynx

§ We are revisiting graph partitioning problem, because:
§ Applications are moving to accelerators
§ DoE facilities have announced different accelerators
§ AMD, Intel, NVIDIA GPUs

§ No accelerator-enabled graph partitioning tool exists
§ We provide Sphynx to fill this gap
§ Distributed-memory parallel, accelerator-enabled, and portable

§ Sphynx is based on a spectral approach, because:
§ Spectral methods use linear-algebra kernels, which are more

amenable to parallelization on accelerators
§ Can potentially speed up algorithm with randomized linear 

algebra



5 Background: Spectral partitioning
§ Proposed by Pothen, Simon, Liou (‘90)
§ Based on Donath & Hoffman (‘73), Fiedler (‘73)

§ Eigenvalue problems: combinatorial, and normalized

§ Adjacency matrix 𝐴 = 𝑎 !" = $10

§ Degree matrix 𝐷 = 𝑑 !" = $deg(𝑣!)
0

§ Form a Laplacian matrix: 
§ Combinatorial Laplacian 𝐿! = 𝐷 − 𝐴
§ Normalized Laplacian 𝐿" = 𝐼 − 𝐷#$/&𝐴𝐷#$/&

§ Find eigenvectors 𝑥 corresponding to smallest nontrivial 
eigenvalues λ > 0 s.t.

§ 𝐿!𝑥 = 𝜆𝑥, for combinatorial eigenvalue problem
§ 𝐿"𝑥 = 𝜆𝑥, for normalized eigenvalue problem

if 𝑒!," ∈ 𝐸
otherwise

if 𝑖 = 𝑗
otherwise
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1. Create Laplacian 𝐿 for 𝐺 – Tpetra CrsMatrix, Kokkos parallel_for

2. Compute (log𝐾 + 1) eigenvectors of 𝐿 using LOBPCG [1] – Anasazi
◦ First eigenvector: trivial, not used
◦ Remaining vectors: coordinates to embed 𝐺 into log𝐾-dimensional space

3. Compute a 𝐾-way partition on coordinates using multi-jagged [2] – Zoltan2
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1 & 2

A. V. Knyazev,“Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method,” SIAM 
Journal on Scientific Computing, vol. 23, no. 2, pp. 517–541, 2001. 

[1]

3

M. Deveci, S. Rajamanickam, K. D. Devine, and U. V. Catalyurek, “Multi-jagged: A scalable parallel spatial partitioning algorithm,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 27, pp. 803–817, March 2016. 

[2]

Sphynx: Parallel partitioner in Trilinos
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§ Number of iterations in LOBPCG is a bottleneck

§ LOBPCG allows using a preconditioner

§ Sphynx supports three preconditioners
1. Jacobi: 𝑀 = 𝑑𝑖𝑎𝑔 𝐴 $% (Ifpack2)
◦ scaling each row by the inverse of the diagonal, easy to parallelize

2. Polynomial: 𝑀 = 𝑝& 𝐴 (Belos)
◦ SpMV to apply, highly parallel

◦ based on GMRES polynomial

3. (Algebraic) Multigrid: 𝐴ℓ(% = 𝑅𝐴ℓ𝑃 (MueLu)
◦ multilevel, captures more global information

◦ costlier setup

Sphynx – Preconditioning 



8 Sphynx – Experiments

§ The GPU focus: MPI+Kokkos (Cuda/HIP)

§ Performed on Summit and used 24 GPUs
§ Desired number of parts = K = 24

§ Each GPU is exclusively used by one MPI rank (default)

§ Device allocations in the Unified Virtual Memory (default)

§ Initial distribution of the test graphs: 1D block
§ This is the default distribution with Tpetra CrsMatrix

§ Parameter sensitivity and comparison against the state of 
the art 

§ Performance metrics: cutsize and runtime



9 Sphynx – Dataset
graph #vertices #edges degree

max avg
ecology1 1,000,000 4,996,000 5 5
dielFilterV2real 1,157,456 48,538,952 110 42
thermal2 1,227,087 8,579,355 11 7
Bump_2911 2,852,430 127,670,910 195 45
Queen_4147 4,147,110 329,499,284 81 79
100^3 1,000,000 26,463,592 27 26
200^3 8,000,000 213,847,192 27 27
400^3 64,000,000 1,719,374,392 27 27
hollywood-2009 1,069,126 113,682,432 11,468 106
com-Orkut 3,072,441 237,442,607 33,314 77
wikipedia-20070206 3,512,462 88,261,228 187,672 25
cit-Patents 3,764,117 36,787,597 794 10
com-LiveJournal 3,997,962 73,360,340 14,816 18
wb-edu 8,863,287 97,233,789 25,782 11
uk-2005 39,252,879 1,602,132,663 1,776,859 41
it-2004 41,290,577 2,096,240,367 1,326,745 51
twitter7 41,652,230 2,446,678,322 2,997,488 59
com-Friendster 65,608,366 3,677,742,636 5,215 56
FullChip 2,986,914 26,621,906 2,312,481 9
circuit5M 5,555,791 59,519,031 1,290,501 11
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The SuiteSparse Matrix Collection, https://sparse.tamu.edu/



10 Sphynx – Results

§ Comparison against ParMETIS [1] and XtraPuLP [2]
§ ParMETIS and XtraPuLP do not run on GPUs

§ Application-friendly comparison on 24 MPI ranks
§ Sphynx uses 6 MPI ranks per node and 1 GPU per rank
§ ParMETIS uses 6 MPI ranks per node
§ XtraPuLP uses 6 MPI ranks per node and 7 OpenMP threads per rank

§ ParMETIS execution did not finish in 2 hours on 4 graphs
§ Largest irregular graphs: uk-2005, it-2004, twitter7, com-Friendster

Average results normalized w.r.t Sphynx
ParMETIS XtraPuLP

runtime cutsize runtime cutsize
regular 0.33 0.81 0.31 6.36
irregular 23.95 0.30 1.24 0.45

G. Karypis, V. Kumar, Parmetis: Parallel graph partitioning and sparse matrix ordering library, Tech. rep., Dept. Computer Science, University 
of Minnesota, 1997. 
G. M. Slota, S. Rajamanickam, K. Devine, K. Madduri, Partitioning trillion-edge graphs in minutes, IPDPS, 2017.

[1]

[2]



11 Randomized Eigensolvers

§ The most expensive phase (90-95%) in spectral partitioning is the 
eigensolver

§ Fairly low accuracy is sufficient to obtain good partitioning

§ Key idea: We can use a randomized eigensolver instead of LOBPCG
§ Randomized methods often get low-accuracy solutions very fast

§ We follow the approach in Halko, Martinsson, Tropp (20XX)

§ We have explored this approach in a prototype
§ HPC implementation in Trilinos/Sphynx still to do



12 Randomized Method: Phase 1

§ Here we will use the normalized Laplacian, LN

§ We estimate the largest eigenvalues of the normalized adjacency matrix, which 
correspond to the smallest eigenvalues of LN

§ First, we approximate the range of AN, where AN = D -½ A D-½.

§ Draw a random Gaussian (normal) matrix Ω

§ Form Y= AN 
q Ω

§ Compute skinny QR: QR = Y



13 Randomized Method: Phase 2

§ Second, compute eigenvalues on the projected problem.

§ Compute projection B = QTAQ

§ Solve eigenproblem for B: B = V ƛ VT

§ Project back: U= QV

§ We only need to solve a small, dense eigenproblem for B

§ Fast!

§ No longer need LOBPCG (or any sparse eigensolver)



Randomized partitioning quality 14

Irregular: Hollywood Regular: Brick3d

The randomized eigensolver actually works better than LOBPCG for 
partitioning with sufficiently large q (for irregular graphs)!



15 Results: Quality

Matrix LOBPCG q=1 q=3 q=5 q=7 q=9 q=11

cube100 2,036,942 23,280,878 18,643,406 16,339,232 14,763,242 13,620,082 12,645,466

hollywood 69,010,728 99,913,222 88,136,872 79,170,890 72,369,774 68,120,278 66,220,826

wikipedia 70,372,336 82,607,424 80,328,958 77,783,740 74,965,720 71,660,478 69,205,042

FullChip 19,837,100 21,925,964 18,723,240 17,296,392 16,483,600 15,890,706 15,466,674

Circuit5M 40,918,466 52,793,074 49,117,806 42,290,548 33,731,544 31,757,878 31,563,734

Sphynx edge cuts with LOBPCG vs randomized solver with L=20.

Randomized method (q=11) often gives lower (better) cuts than LOBPCG !



16 Results: Run Time

Matrix LOBPCG q=1 q=3 q=5 q=7 q=9 q=11

cube100 18.19 1.601 2.185 2.779 3.357 3.907 4.465

hollywood 360.6 5.865 10.88 15.69 20.44 25.33 30.35

wikipedia 923.3 18.59 33.28 47.75 62.15 76.45 90.84

FullChip 162.8 5.00 6.24 7.50 8.79 10.13 11.38

Circuit5M 821.5 11.14 13.98 16.23 18.27 21.04 23.93

Sphynx run times (CPU) with LOBPCG vs randomized solver with 
L=20.

Our randomized method is 10X-80X faster (q=1) than LOBPCG!
Also much faster with q=11 (good cuts)



17 Conclusions
§ Randomized eigensolver can dramatically speed up (5-80X) a spectral 

partitioner 
§ Works well for many irregular graphs (e.g., web graphs) 
§ but not so well for more regular graphs (e.g., meshes)

§ Perhaps related to separation of the Laplacian eigenvalues?

§ Trade-off in computational cost vs quality
§ Sphynx has been released in Trilinos/Zoltan2
§ Randomized method in progress (will be released soon)

§ All spectral methods have some weaknesses
§ Often slower than multilevel methods and sometimes worse cuts

§ Collaboration with K. Madduri and M. Gilbert (Penn State) may address this

§ Future work:
§ Add refinement: Will improve cut quality but take more time

§ Alternatives to Multijagged geometric partitioning (QRCP?)

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of 
the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
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Why Revisit Spectral Methods Now?

Weren’t they abandoned in the ‘90s and replaced by multilevel 
methods? Yes, but…
• Quality of spectral partitioners are often only slightly worse 
than multilevel.
•Preconditioned eigensolvers (LOBPCG) came later.
•Linear algebra operations have been optimized for GPU.
•Spectral partitioning is robust for large #proc (#GPU), as 
eigenvectors don’t change

19



2
0 Sphynx – Spectral partitioning

§ Traditional spectral methods [1] use recursive bipartitioning. 
At each bipartitioning step, they

§ compute one eigenvector (Fiedler vector) on the current graph
§ sort the vertices w.r.t. the entries of the eigenvector
§ bipartition the vertices according to the sorted order

§ Sphynx computes (log𝐾 + 1) eigenvectors of the Laplacian, 
all at once

§ Computing all eigenvectors at once avoids
§ forming subgraphs and/or corresponding Laplacians
§ moving subgraphs across different processes
§ calling eigensolver multiple times

A. Pothen, H. Simon, and K. Liou, “Partitioning sparse matrices with eigenvectors of graphs,” SIAM J. Matrix Anal., vol. 
11, pp. 430–452, July 1990. 

[1]



21 Sphynx – Results

LOBPCG Convergence  Tolerance:

Default: 1e-2 for MueLu

1e-3 for others

Default: 1e-2 for all



22 Sphynx – Results

Average results normalized w.r.t combinatorial

preconditioner
generalized normalized

runtime cutsize runtime cutsize

regular
Jacobi 0.81 1.15 0.43 2.26
Polynomial 0.73 1.21 0.54 2.45
MueLu 0.99 1.12 0.95 2.20

irregular
Jacobi 0.75 0.83 0.26 1.36
Polynomial 0.36 0.84 0.02 0.83
MueLu 0.71 0.90 0.31 1.68

Eigenvalue Problem:

Default: combinatorial for regular graphs,

generalized for irregular graphs with Jacobi and MueLu, and

normalized for irregular graphs with Polynomial.



23 Sphynx – Results

Average results normalized w.r.t. Jacobi
Polynomial MueLu

runtime cutsize runtime cutsize
regular 0.46 1.03 0.42 0.91
irregular 0.62 1.71 1.91 0.94

Preconditioner:

Suggested: MueLu for regular graphs,

Polynomial for irregular graphs.



24 Sphynx: Exascale Systems

RUNNING TIME (s)
Summit Spock Spock/Summit

ecology1 1.40 0.65 0.47
dielFilterV2real 2.13 1.61 0.75
thermal2 1.78 1.22 0.69
Bump_2911 1.68 1.35 0.80
Queen_4147 2.20 1.61 0.73
100^3 1.39 0.97 0.70
200^3 2.11 1.78 0.84
400^3 6.78 7.75 1.14
geomean 0.75
hollywood-2009 4.79 3.60 0.75
com-Orkut 8.06 7.52 0.93
wikipedia-20070206 15.66 18.44 1.18
cit-Patents 8.27 7.75 0.94
com-LiveJournal 8.70 7.81 0.90
wb-edu 5.54 6.55 1.18
uk-2005 89.31 137.59 1.54
it-2004 90.24 101.58 1.13
twitter7 482.85 499.43 1.03
com-Friendster 186.16 135.20 0.73
FullChip 48.36 77.56 1.60
circuit5M 43.55 47.87 1.10
geomean 1.05
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Spock/Summit

Sphynx Running Time on OLCF systems:
• Summit: Nvidia Volta V100
• Spock: AMD MI200


